

<u>Objectif du TP :</u>

- Choix du matériel pour faire un réseau
- Comprendre l'adressage IP
- Paramétrer des hôtes sur un même réseau pour qu'ils communiquent entre eux
- Appréhender le fonctionnement d'un commutateur (switch)
- Relier deux réseaux différents : le routeur
- Appréhender le fonctionnement d'un routeur
- Appréhender la notion de passerelle (gateway)
- Paramétrer des hôtes de réseaux différents pour qu'ils communiquent entre eux
- Simuler un réseau sans fil (WIFI)

Partie 1 : Apprentissage des commandes DOS pour les réseaux

Pour exécuter l'interpréteur de commandes, il faut aller dans le Menu Démarrer > Exécuter, puis tapez cmd.

1 - Relevé des paramètres réseau de son ordinateur avec la commande ipconfig

Pour relever les paramètres réseaux, il suffit de taper ipconfig ou ipconfig/all.

Commande ipconfig : Permet d'afficher un résumé des propriétés IP des cartes réseaux de l'ordinateur.

Commande ipconfig/all : *Plus complète que la précédente, IPCONFIG /all affiche également le nom de l'hôte (de l'ordinateur), la description de la carte et son adresse MAC, si le DHCP est configuré et l'adresse du serveur, le serveur DNS.*

- Q1) Tapez la commande "ipconfig/all" puis validez. Vous voyez apparaitre les paramètres réseaux. Relever:
 - ✓ L'adresse IP du poste :
 - ✓ Le masque de sous-réseau :
 - ✓ L'adresse IP de la passerelle:
 - ✓ L'adresse IP du serveur DNS :
 - ✓ L'adresse MAC du poste:

En déduire l'adresse de base du réseau du lycée, le nombre de postes configurables avec ce masque de sous-réseau. Le poste est-il en DHCP?

Q2) Tapez la commande "hostname" et relever le nom réseau de votre poste.

2 - Vérifier la bonne connexion vers le réseau avec la commande ping

La commande permet de déterminer si la connexion vers une adresse IP est effective en affichant les commandes effectivement reçues. Elle est basée sur le protocole réseau ICMP.

C:\>ping 172.18.151.248						
Envoi d'une requête 'ping' sur 172.18.151.248 avec 32 octets de données						
Réponse de 172.18.151.248 : octets=32 temps<1ms TTL=128 Réponse de 172.18.151.248 : octets=32 temps<1ms TTL=128 Réponse de 172.18.151.248 : octets=32 temps<1ms TTL=128 Réponse de 172.18.151.248 : octets=32 temps<1ms TTL=128						
Statistiques Ping pour 172.18.151.248: Paquets : envoyés = 4, reçus = 4, perdus = 0 (perte 0%), Durée approximative des boucles en millisecondes : Minimum = 0ms, Maximum = 0ms, Moyenne = 0ms						

Q3) Compléter le tableau suivant avec la commande ping pour différentes destinations :

Destination du ping	Nbre de paquets	Nbre de paquets	Temps	Remarques
	envoyés	reçus	moyen	
ping 127.0.0.1				
ping 172.18.151.248				
ping xxxx (passerelle)				
ping www.google.fr				
Ping adresse IP de				
google				

Remarque : ping www.google.com envoie une commande ping avec un nom de domaine. Cette option utilise les serveurs DNS.

Q4) Tester la communication vers l'imprimante de la salle (au préalable, il vous faudra trouver l'adresse IP de l'imprimante)

3 - Vérification du cache ARP avec la commande ARP

Cette commande est utilisée pour le protocole réseau ARP (Adress Reverse Protocol). Elle permet d'afficher et modifier les correspondances adresses IP / physiques (MAC d'une carte réseau). Les deux commandes les plus utilisées sont :

arp -a affiche la correspondance IP / adresse mac des ordinateurs et périphériques connectés. Les correspondances dynamiques utilisent le DHCP pour configurer l'adresse IP.

C:\>arp -a		
Interface : 172.18.14	9.119 0×2	
Adresse Internet	Adresse physique	T ype dunamicus
172.18.151.248	00-0c-29-3e-3f-97	dynamigue
172.18.151.254	00-06-4f-90-c8-08	dynamique
arp – d permet de vider le cache	2 ARP	

Q4) Tapez la commande "arp -a".

Interpréter les informations données par cette table.

ucune entrée ARP trouvée

- Q5) Relever l'adresse MAC de la passerelle par défaut.
- Q6) Vider le cache ARP.
- Q7) On désire connaitre l'adresse MAC de l'imprimante. Donner la suite des commandes à effectuer.

<u>4 – Comprendre le routage avec la commande tracert</u>

La commande tracert permet d'afficher les chemins (ou les routes) qu'un paquet va prendre pour aller de la machine locale à une autre machine connectée au réseau IP.

Exempl	le : Tr	ace	rt <u>ww</u>	v.go	ogl	<u>e.fr</u>		
C	∷∖>tr	acei	rt www	.go	ogl	e.fr		
D a	léterm lvec u	inat In ma	tion d aximum	e 1 [.] de	'it: 30	inérain sauts	re :	vers www.google.fr [173.194.35.119]
	1	<1	MS	<1	ms	<1	ms	172.18.151.254
	2 2	1 2	MS MS	1	ms ms	1 2	MS MS	174.214.208.b 10 200 12 73
	4	4	ms ms	Š	ms	5	ms	194.214.211.75
	5	4	ms	ā	ms	3	ms	194.214.211.107
	6	6	ms	3	MS	3	ms	lycees-gw-rt-crri.cratere.org [195.221.121.46]
	-7 -10	- 3 	ms	3	ms	3	ms	v1656-gi8-1-clermont-rtr-021.noc.renater.fr [19
-	эт.та 8	12	9 J 1 C	15	me	14	me	193 51 180 197
	9	11	MS	11	MS	15	MS	te1-1-marseille1-rtr-021.noc.renater.fr [193.5]
1	89.18]						
	10	*		11	MS	11	MS	193.51.179.186
	11	11	ms	11	MS	14	ms	72.14.223.254
	12	11	ms	11	MS	10	ms	209.85.252.194
	13	11	ms	11	MS	11	ms	209.85.248.129
	14	48	ms	11	MS	11	ms	mrs02s05-in-f23.1e100.net [173.194.35.119]
I	tinér	aire	e déte:	rmi	né.			

Q8) Tapez la commande adéquate pour obtenir le chemin emprunté par le paquet entre votre ordinateur et la passerelle.

Q9) Nous allons visualiser les routeurs par lesquels les trames sont passées entre votre ordinateur et l'académie de clermont.

- Tapez "tracert <u>www.ac-clermont.fr</u>".
- Donner le nombre de sauts. En déduire le nombre de routeurs.

	Par	quel	s endro	oits	sommes	-no	us passés?
C:∖≻t	race	rt w	ww.ac	-c 1	ermont.	.fr	
Détei	eminat	tion	de l'	'it:	inéraiı	ме ч	vers www.ac-clermont.fr [172.30.81.77]
avec	un ma	axim	um de	30	sauts	:	
1	<1	MS	<1	MS	<1	MS	172.18.151.254
2	5	MS	4	MS	5	MS	fw06-ext01-sphynx.ac-clermont.fr [192.168.6.228]
3	55	MS	4	MS	4	MS	192.168.56.21
4		MS	4	MS	4	MS	www.ac-clermont.fr [172.30.81.77]
Itiné	éraire	e dé	termin	né.			

C:\>tracert 172.18.151.248
Détermination de l'itinéraire vers SRU-GEL [172.18.151.248] avec un maximum de 30 sauts :
1 <1 ms <1 ms <1 ms SRV-GEL [172.18.151.248]
Itinéraire déterminé.

PARTIE 2 – Utilisation du logiciel Wireshark

1 - <u>Le DNS (Résolution de Nom de domaine) :</u>

Un lien (exemple : www.ac-clermont.fr) est un nom facile à retenir pour l'utilisateur. En fait derrière chaque lien se cache une adresse IP. Le DNS permet de faire la correspondance entre l'adresse IP et le lien et donc, quand vous êtes en train de naviguer sur Internet, vous pouvez indifféremment rentrer les liens habituels ou les IP, le DNS s'occupe de faire la conversion comme si vous utilisiez le lien.

Note : En cas d'hébergement mutualisé (plusieurs sites hébergés sur le même serveur donc même adresse IP), l'adresse IP seule ne pourra pas conduire au bon site.

Q10) Nous allons montrer cette correspondance avec un petit exercice simple :

- Lancer Wireshark
- Dans le menu Capture → Interface → cliquer sur la carte réseau connectée → Start pour lancer la capture.

	Description	IP	Packets	Packets/s	
V 🔊 🛛	Microsoft	fe80::5c57:1892:58b8:1275	68	1	Detail
- 🔁 I	Realtek PCIe FE Family Controller	fe80::79f7:d43e:3ffa:de2c	0	0	Detail
- 🗩 I	Microsoft	fe80::a80b:e956:22f9:be3d	0	0	Detail
1202002					200

Vous devez voir apparaitre beaucoup de trames qui circulent... c'est difficilement interprétable donc nous allons filtrer les informations qui nous intéressent.

		 Expression 	Clear Apply Save	
Time	Source	Destination	Protocol Length	Info
Number	192.168.1.3	192.168.1.200	SNMP	90 get-request 1.3.6.1.4.1.11.2.3.9.1.
03521000	192.168.1.200	192.168.1.3	SNMP	329 get-response 1.3.6.1.4.1.11.2.3.9.1
3 0.005386000	192.168.1.3	192.168.1.200	TCP	74 15287 > 9220 [SYN] Seq=0 Win=8192 L
4 0.008642000	192.168.1.200	192.168.1.3	TCP	78 9220 > 15287 [SYN, ACK] Seq=0 Ack=1
5 0.008736000	192.168.1.3	192.168.1.200	TCP	66 15287 > 9220 [ACK] Seq=1 Ack=1 Win=
6 0.023509000	192.168.1.200	192.168.1.3	TCP	106 9220 > 15287 [PSH, ACK] Seq=1 Ack=1
7 0.109700000	192.168.1.3	192.168.1.200	TCP	95 15287 > 9220 [PSH, ACK] Seq=1 Ack=4
8 0.112507000	192.168.1.200	192.168.1.3	TCP	66 9220 > 15287 [ACK] Seq=41 Ack=30 Wi
9 0.121761000	192.168.1.200	192.168.1.3	TCP	98 9220 > 15287 [PSH, ACK] Seq=41 Ack=
10 0.209560000	192.168.1.3	192.168.1.200	TCP	75 15287 > 9220 [PSH, ACK] Seq=30 Ack=
11 0.212505000	192.168.1.200	192.168.1.3	TCP	66 9220 > 15287 [ACK] Seq=73 Ack=39 Wi
12 0.224910000	192.168.1.200	192.168.1.3	TCP	74 9220 > 15287 [PSH, АСК] Seq=73 Ack=
13 0.309600000	192.168.1.3	192.168.1.200	TCP	74 15287 > 9220 [РЅН, АСК] Seq=39 Ack=
14 0.312508000	192.168.1.200	192.168.1.3	TCP	66 9220 > 15287 [ACK] Seq=81 Ack=47 Wi
15 0.326611000	192.168.1.200	192.168.1.3	TCP	75 9220 > 15287 [PSH, ACK] Seq=81 Ack=
16 0.409778000	192.168.1.3	192.168.1.200	TCP	71 15287 > 9220 [PSH, ACK] Seq=47 Ack=
17 0.412433000	192.168.1.200	192.168.1.3	TCP	66 9220 > 15287 [ACK] Seq=90 Ack=52 Wi
18 0.422808000	192.168.1.200	192.168.1.3	TCP	74 9220 > 15287 [PSH, ACK] Seq=90 Ack=
19 0.510634000	192.168.1.3	192.168.1.200	SNMP	94 set-request 1.3.6.1.4.1.11.2.3.9.4.
20 0.518994000	192.168.1.200	192.168.1.3	SNMP	96 get-response 1.3.6.1.4.1.11.2.3.9.4
21 0.520260000	192.168.1.3	192.168.1.200	SNMP	93 get-request 1.3.6.1.4.1.11.2.3.9.4.
22 0.529438000	192.168.1.200	192.168.1.3	SNMP	102 get-response 1.3.6.1.4.1.11.2.3.9.4
23 0.530667000	192.168.1.3	192.168.1.200	SNMP	94 set-request 1.3.6.1.4.1.11.2.3.9.4.
24 0.540114000	192.168.1.200	192.168.1.3	SNMP	96 get-response 1.3.6.1.4.1.11.2.3.9.4
25 0.540986000	192.168.1.3	192.168.1.200	TCP	54 15287 > 9220 [RST, ACK] Seq=52 Ack=
26 1.377196000	fe80::5c57:1892:58	3b8::ff02::c	SSDP	208 M-SEARCH * HTTP/1.1
27 2.194810000	192.168.1.3	192.168.1.200	SRVLOC	86 Attribute Request, V1 Transaction J
				m
me 1: 90 bytes on	wire (720 bits), 90 H	oytes captured (720 bi	ts) on interface	0
ernet II, Src: 7c:	e9:d3:10:43:66 (7c:e9	0:d3:10:43:66), Dst: 0	0:21:5a:02:a0:27	(00:21:5a:02:a0:27)
Destination: 00:21:	5a:02:a0:27 (00:21:5a	a:02:a0:27)		
5ource: 7c:e9:d3:10	:43:66 (7c:e9:d3:10:4	3:66)		
Type: IP (0x0800)				
ernet Protocol Ver	sion 4, Src: 192.168.	1.3 (192.168.1.3), Ds	t: 192.168.1.200	(192.168.1.200)
version: 4				, ,
Header length: 20 b	lytes			
Differentiated Serv	ices Field: 0x00 (DSG	P 0x00: Default; ECN:	0x00: Not-ECT (N	IOT ECN-Capable Transport))
0000 00 = Diffe	erentiated Services Co	odepoint: Default (0x0	0)	1
	7		cf. r.	
00 21 5a 02 a0 2/ 00 4c 4a 8e 00 00	80 11 6b f7 c0 38 0	1 03 c0 a8 11	kE.	
	00 II 00 17 CU 40 U	co ao	N	
01 c8 f3 7c 00 a1	00 38 1d f3 30 2e 0	2 01 00 04		
01 c8 f3 7c 00 a1 08 69 6e 74 65 72	00 38 1d f3 30 2e 0 6e 61 6c a0 1f 02 0	2 01 00 04 8 2 28 05 02 .interna	0 1(
01 c8 f3 7c 00 a1 08 69 6e 74 65 72 01 00 02 01 00 30	00 38 1d f3 30 2e 0 6e 61 6c a0 1f 02 0 13 30 11 06 0d 2b 0	2 01 00 04 8 2 28 05 02 .interna 6 01 04 010.0		

TP Réseau Ethernet

 Nous allons mettre un filtre pour ne relever que les protocoles DNS. Pour cela, écrivez DNS dans la case correspondante sur l'espace de travail de Wireshark:

Filter: dns

 Dans un navigateur internet, accéder au site www.google.fr et observer la requête DNS en découlant ainsi que la réponse. Relever l'adresse IP de ce site et taper la directement dans le navigateur pour vérifier qu'il s'agit bien de google.

2- <u>Repérer l'adresse MAC du destinataire:</u>

Maintenant que nous connaissons l'adresse IP du site de google, nous allons filtrer les messages pour nous concentrer que sur le discours avec ce site.

Q11)

- Filter: ip.addr==x.x.x.x avec x.x.x.x
 l'adresse IP de google trouvée précédemment.
- Vous ne devez plus observer que le discours avec ce site, vérifier le en surfant.
- Relever:
 - ✓ L'adresse MAC de la carte réseau de google.
 - ✓ Les types de protocole utilisé pour la communication avec le site.
 - ✓ Que veut dire ACK dans les trames TCP?
- On souhaite filtrer la communication avec le site google par son adresse MAC et non plus son IP. Avec l'aide sur les filtres de wireshark, déterminer la syntaxe à adopter.

Wireshi	ark: Display Filter - Profile: Default	
Edit	Display Filter	
	Ethernet address 00:08:15:00:08:15	1
	Ethernet type 0x0806 (ARP)	
New	Ethernet broadcast	
	No ARP	
	IP only	-
	IP address 192.168.0.1	
	IP address isn't 192.168.0.1, don't use != for this!	
·	IPX only	
Delete	TCP only	
	UDP only	
	UDP port isn't 53 (not DNS), don't use != for this!	2
Propertie		
Filter nan	ne: New filter	
Filter strin	ig: eth	Expression.
11-1-		Connel
<u>H</u> elp	<u>O</u> K <u>Apply</u>	

3- Observation d'une commande Ping et d'un protocole ARP:

Q12) Nous allons observer quels sont les échanges lors d'une commande ping vers notre imprimante. Les commandes ping utilise le protocole ICMP

- Filtrer les trames en utilisant Filter: icmp
- Lancer une fenêtre de commande dos et taper une commande ping.
- Relever:
 - ✓ Le nombre de requêtes envoyées par le PC.
 - ✓ Le nombre de réponses envoyées par l'imprimante.
 - ✓ Le temps de réponse précis (à voir dans le détail de la trame champs du milieu)

```
□ Internet Control Message Protocol
Type: 0 (Echo (ping) reply)
Code: 0
Checksum: 0x54c7 [correct]
Identifier (BE): 1 (0x0001)
Identifier (LE): 256 (0x0100)
Sequence number (BE): 148 (0x0094)
Sequence number (LE): 37888 (0x9400)
[Response To: 70249]
[Response Time: 2.262 ms]
```

- ✓ Les données qui sont échangées par les deux équipements (voir le contenu des données de la trame tout en bas)
- Proposer un filtrage afin d'observer des échanges de protocoles ARP qui sont à commenter.

Q13) Application: Caméra IP installée en DHCP

Une caméra IP filme la classe, elle est en fonctionnement mais comme elle est configurée en DHCP, son adresse IP n'est pas connue. Votre mission est de retrouver cette caméra et de s'y connecter via un navigateur internet.

PARTIE 3 - Prise en main du simulateur réseau Cisco Packet Tracer

<u>1 – Création d'un réseau Peer-to-Peer</u>

Un réseau Peer-to-Peer permet de mettre en relation deux ordinateurs clients afin de partager directement leurs fichiers (son, image, données, logiciels) sans passer par un serveur central. Le matériel nécessaire est donc minimal. Un réseau Peer-to-Peer peut être constitué de milliers d'ordinateurs (eDonkey/eMule, ...)

Le réseau Peer-to-Peer est le réseau qui nécessite le minimum de matériel. Il faut simplement utiliser :

- > deux postes informatiques équipées de deux cartes réseau Ethernet
- un câble à paires torsadées croisé (avec connecteur RJ45 pour pouvoir le connecter aux cartes réseau)

Routage statique Adresse IP des PCs PCO : 192.168.1.1 PC1 : 192.168.1.2 Masque : 255.255.255.0

Q14) Construire le réseau avec les paramètres réseaux ci-dessus. Remarque : Inutile de renseigner la passerelle et le serveur DNS (pas présent dans notre réseau)

Q15) Tester la communication en ligne de commande avec un ping entre PCO et PC1 en cliquant sur PCO puis « Invite de commande » puis ping x.x.x.x.

Q16) En mode temps réel (Realtime), tester la communication en envoyant un PDU (Packet Data Unit) équivalent à un ping en cliquant sur l'enveloppe puis en cliquant sur l'émetteur (PCO) puis sur le destinataire (PC1).

Q17) En mode Simulation (bouton situé en bas de l'écran), sélectionner un PDU (Packet Data Unit) puis placer l'enveloppe sur PCO (émetteur) puis sur PC1 (destinataire).

Cliquer sur « Capture/Faire suivre » puis visualiser les échanges de paquets.

A partir de la visualisation des trames (clic sur le carré de couleur) en lien avec le modèle OSI, compléter le tableau suivant en précisant les adresses IP et les adresses MAC.

Emetteur	Destinataire	Adresse IP émetteur	Adresse IP destinataire	Adresse MAC émetteur	Adresse MAC destinataire
PCO	PC1				

Puis le tableau suivant montrant le sens de transfert, le protocole utilisé et les différentes couches utilisées.

Emetteur	Destinataire	Sens de transfert	Protocole utilisé	Couches utilisées dans le modèle OSI
Р <i>С</i> О				

Dans quelle couche réseau du modèle OSI retrouve t'on les adresses IP des postes ? Dans quelle couche réseau du modèle OSI retrouve t'on les adresses MAC des postes ?

2- Création d'un réseau avec un commutateur (switch)

2.1 - Réseau simple en Ethernet

Nous allons créer un réseau de 3 terminaux (2 PCs + imprimante) reliés par un commutateur (appelé aussi switch).

Adresse IP PCO : 192.168.1.1 PC1 : 192.168.1.2 Portable 1 : 192.168.1.3 Masque : 255.255.255.0

Q18) Donner l'adresse de ce réseau.

Q19) Construire le réseau ci-dessus avec les paramètres réseaux indiqués.

Quel type de câble est utilisé pour relier des PC à un SWITCH ? Remarque : Les points oranges signifient que le switch est en cours de configuration avec les postes, il faudra attendre quelques secondes pour qu'ils soient tous verts (rappel : nous sommes en temps réel)

Q20) En mode temps réel, vérifier la bonne communication entre tous les postes avec l'enveloppe.

Q21) <u>Rôle du commutateur</u>

En mode simulation, envoyer l'enveloppe (PDU) de PCO vers le portable. Cliquer sur « Capture/Faire suivre » puis visualiser les échanges de paquets.

A partir de la visualisation des trames (clic sur le carré de couleur) en lien avec le modèle OSI, compléter le tableau suivant indiquant le protocole utilisé et les différentes couches utilisées.

Emetteur	Destinataire	Protocole	Couches utilisées dans le modèle
		utilisé	OSI
P <i>C</i> O	SW1		
SW1	PC1		
SW1	Portable		
Portable	SW1		
SW1	PC1		
SW1	PCO		
P <i>C</i> 0	SW1		
SW1	Portable		
Portable	SW1		
SW1	PCO		

Effacer la liste d'évènements (visualisation des trames) puis refaire une simulation en renvoyant l'enveloppe (PDU) de PCO vers le portable puis cliquer sur « Capture/Faire suivre » pour visualiser les échanges de paquets. Que constatez-vous ?

2.2 - Réseau mixte en Ethernet et sans fil

Nous allons maintenant compléter notre réseau en rajoutant une imprimante et 3 terminaux sans fils (portable, tablette et un téléphone).

Q22) Construire le réseau ci-dessus avec les paramètres réseaux indiqués. *Remarque : Pour configurer le portable en sans fil, il faut d'abord remplacer la carte réseau (Ehernet remplacé par wireless nommé linksys-WPC300N) puis aller dans bureau puis cliquer sur PC Wireless puis « Connect » => Le portable sans fil est alors détecté.*

Q23) En mode temps réel, vérifier la bonne communication entre tous les postes avec l'enveloppe.

<u>3- Création d'un réseau avec un routeur</u>

Q24) Construire le réseau ci-dessus avec les paramètres réseaux indiqués. *Remarque : En cas de problème sur la connexion du switch, rajouter un port supplémentaire.*

Q25) En mode temps réel, vérifier la bonne communication entre tous les postes avec l'enveloppe.

4 - Création d'un réseau « Maison » de type box relié à Internet

Une box est reliée entre votre réseau local et le réseau internet via un modem ADSL. Internet sera simulé avec un routeur et un serveur représentant votre fournisseur d'accès Orange.

Q26) Ouvrir le fichier "Box_internet_eleve.pkt" , sélectionner le modem et donner les deux types de connecteurs et média utilisés pour la communication entre votre réseau local et Internet.

est d'assurer la configuration automatique des paramètres IP d'une station, notamment en lui affectant automatiquement une adresse IP et un masque de sous-réseau.

Q29) Rajouter un serveur DHCP permettant d'adresser automatiquement les postes clients avec la configuration suivante :

Q30) Vérifier la bonne communication entre les postes clients et le serveur Orange.

<u>6 – Création d'un réseau « Maison » de type box relié à Internet avec serveur</u> DHCP et DNS.

Qu'est ce que le DNS (Domaine Name Système = Résolution de Nom de domaine) :

Un lien (exemple : <u>www.ac-clermont.fr</u>) est un nom facile à retenir pour l'utilisateur. En fait derrière chaque lien se cache une adresse IP. Le DNS permet de faire la correspondance entre l'adresse IP et le lien et donc, quand vous êtes en train de naviguer sur Internet, vous pouvez indifféremment rentrer les liens habituels ou les IP, le DNS s'occupe de faire la conversion comme si vous utilisiez le lien.

Q31) Rajouter un serveur DNS (<u>www.orange.fr</u> correspondant à l'adresse du FAI 200.200.200.1) permettant d'ouvrir la page html d'Orange directement à partir de l'adresse IP puis à partir du nom de domaine.

Q32) Tester la communication avec le nom de domaine : <u>www.orange.fr</u> à partir d'un poste client à partir de la fenêtre « Navigateur Web ».

Q33) Modifier la page web du serveur Orange puis vérifier à nouveau l'accès au site à partir d'un poste client.

Q34) Tester la communication avec le simulateur et donner les différents protocoles utilisés et les différentes couches utilisées du modèle OSI.

7 - Création d'un réseau type « lycée » :

Vous voilà propulsé gestionnaire réseau du lycée, vous avez en responsabilité la création d'un réseau (indépendant du réseau du lycée) équipant trois salles de cours :

- Chacune des trois salles comporte neuf postes fixes + une imprimante + un switch
- Un serveur gère les services HTTP, DNS et DHCP.
- Un point d'accès WiFi permet l'accès sans fil à trois PC portables (1 par salle) ainsi qu'à tout autre appareil invité (en DHCP)
- Une passerelle donne accès au réseau global du lycée et notamment à internet (passerelle par défaut), les paramètres de ce réseau sont :
 - @ réseau : 172.18.144.0
 - Masque de sous-réseau : 255.255.248.0
 - Passerelle par défaut : 172.18.151.254
 - Serveur DNS : 172.18.151.253

On attend de votre part la création de ce sous-réseau, vous êtes libre du choix des paramètres réseau. Pour une assurer une bonne communication avec les enseignants, il vous faudra fourni un plan de salle réseau indiquant les noms des équipements avec leur adresses IP respectives.